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INTERACTIONS OF FOUR

EDGE DISLOCATIONS WITH CRACK

B. Altan and A. C. Eringen

Princeton University

ABSTRACT

The stress field is determined in an infinite nonlocal elastic solid

weakened by a Griffith crack and four edge dislocations. Dislocations are

located symmetrically with respect to the crack which is subject to a uni-

form tensile field. The problem is considered to be a plane strain problem

in nonlocal elasticity.
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1. INTRODUCTION

It is well-known that, classical elasticity solution of the crack and dislocation

interaction possess singularities both at crack tips and at the point of application of the

dislocation (cf. [1]). The non-physical nature of this solution has been debated exten-

sively in the literature until few years ago, when the solution of the same problem, based

on nonlocal elasticity, appeared (see [2]). According to the nonlocal elasticity the stress

field is finite at crack tips [3,4] and at the dislocation core [5,6] but possess maxima near

these points. Thus, a plastic region constructed by means of an appropriate distributions

of dislocations, will not contain any stress singularity [7].

According to physics of solids, the initiation of fracture is attributed to the max-

imum stress field exceeding the cohesive stress that holds atomic bonds together. Conse-

quently, nonlocal results permit the introduction of the maximum stress hypothesis as a

fracture criterion [4,8], and this is shown to give excellent agreements with atomic

theories and experiments [9,101.

Motivated with these results, here we pursue to discuss, a primitive problem by

means of which one can construct the solution of the small scale yielding in the forms of

two inclined straight lines emanating from each crack tip. This model is an accepted one,

both on the basis of experiment and classical treatments [11,12]. This model can be used

to construct solutions of plastic yielding based on distributions of dislocations on areas

near the crack tips. Such a model is much more realistic, and it is in accordance with

experimental observations.

The solution of Mode El crack, with a line distribution of screw dislocations along

the crack line, was presented in a previous work [13]. The present paper represents an

extension of the same problem to the Mode I crack, with inclined edge dislocations.

- i - , ' ° II
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2. BASIC EQUATIONS

Linear theory of nonlocal elasticity, for homogeneous and isotropic solids, (vanish-

ing body force and inertia) is governed by Cauchy's equations of motion

tk.k = 0 (1)

and the stress constitutive equations, (cf. [2,9]),

tk = Ja(Ix'-xI)q,(.')dv(_') (2)
V

where okt is given by

ON= Ur, , 8 + UI+ Ut, k) (3)

Here tki(_) is the real stress tensor at the reference point x. It is influenced by the strains

at all points, x', of the body, with volume V enclosed within surface aV. X and ;. are the

usual Lamer constants and uk(.') is the displacement vector at x'eV. The influence func-

tion a(lx'-x I) depends on the distance Ix'-x I of x' from x. Various forms of this

function was given by Eringen [14]. Here we use

(x(I x ) = (2x2)- 1K 0( x'7-/P) (4)

which is appropriate to the plane strain problem. Here K0 is the modified Bessel's func-

tion of the first kind, and e is an internal characteristic length appropriate to material;

e.g., for perfect crystals it can be taken as the lattice parameter. For other kernels in 1, 2

and 3 dimensions see [14].
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It is of interest to note that (4) is the Green's function of the linear operator

L = I - E2 V2 , i.e.,

(1 -e 2V2) a(Ix'-x i) = 8(tx'-x I)

where V2 is the two-dimensional Laplacian operator and k) is the Dirac delta measure.

This feature of the function KO allows us to invert the constitutive equations (2) of nonlo-

cal elasticity:

( 2V2) tk = o;k (5)

With this apparatus at hand, Eringen [151 gave the solution of the problem of the stress

field due to edge dislocations which is used in the following analysis.
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3. FORMULATION OF THE PROBLEM

The main purpose of this study is to describe the stress field in an infinite elastic

plane, weakened by a line crack and has four single dislocations, which are located sym-

metrically with respect to the crack, Fig. 1. The crack is subject to a constant tensile

stress to and the Burger's vectors of the four edge dislocations are:

-b(cos a,sina,O), -b(-cosa,sina,O) (6)

-b (cos a, - sin c, 0), -b (- cos a, -sin a, 0)

The stress field is determined by the superposition of three primitive stress fields in

the medium:

(i) Stress field due to the constant traction on the crack surface (t)

(ii) Stress field due to the dislocations (t°) 7

(iii) Stress field due to the interaction of crack with dislocation (tEL)

The solution of problem (ii) was given by Eringen [15]. The stress field due to an

edge dislocation with Burger's vector b (1, 0, 0), and located at the origin of the coordi-

nates, can be expressed as follows:

tD (x, y) = - 103 f I (P) Sin 0 + f 3 (p) sin 3 0), (7)

tD (X, Y) = - 1C{f I (P) Si 0 - f 3 (p) sin 3 0) ,

tD (xy) = - ICKf I(p) COS 0 + f 3 () COS O)

where
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rCP (8)

p

f I:= I-K(p), f 3(P) = K 3(p)J13(p')dp' + 13(p)JK 3(p')dp'
p0 p

Here r = (x 2 + y 2)'T and 0 are polar coordinates, I,, and Km stand for the modified

Bessel's functions of first and second kinds of mAh order.

The problems (i) and (iii) can be combined and solved together. To this end we

need to describe the load on crack surface imposed by dislocations. Considering the

geometry of the problem (Fig. 1) this load can be expressed as follows:

7=1 a sin2 CC + t cos2 ct + 2t; cos a . sina (9)

where

t = 2[tR(pl, 01) + t.(p3, 0 3)] (10)

t; = 2[tD(pl, 01) + tD(p 3, 03)]

tZ = 2ltg(pl, 01) + tg(P 3, 03)I

p, = [(c - x )2 + a2 + 2a (c -x )COsC E7 , 0 1 = x + W - a V = r sin a , sin c ]

(11)

P3 = [(c +x) 2 +a 2 +2a(c +x)cosct] 7 , 03 = x+V3-Ca, V =- arcsin [a sina

To solve a crack problem which is loaded arbitrarily we follow Eringen [16]. The

stress and displacement field for plane strain problems can be expressed as follows:
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1 dp( , v) e- 4 dt (12)
2_x f'T dy2  e

-1~

2x f 4 i ) e -i

y(x} y I - d 2 +.-(I - v) d4W e-4' dk

-. dy 2 Vd yd-Tr

where

( , y) = [A(t)+y D(t)]e - 1tly + C(e)e - N2+Oy y !O (13)

The unknown function A (k), D (k) and C (t) will be determined by the boundary condi-

tions for specific problem under consideration.

For a crack located at y = 0 Ix I < c and loaded symmetrically with normal trac-

tions, i.e.

tyy = -o(x) = ,t(x)-o , (o0(x) = ao(-x)) (14)

we have the boundary conditions

t, (x,y)= , y =0 (15)
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and

v(xy)= 0, y = 0 xi > c (16)

The boundary condition (15) yields

D(4) = I I A(4) + A4 2+e-2 C( ) (17)

Moreover, to ensure that t, is finite at the tip of the crack we set

I I

1 ~ 1
C (4) = 42(42 + C- 2)- -7 [(42 + E7 2)'" - 24]- 1 A (4) (18)

With the help of (17) and (18), the boundary conditions (14) and (16) read

'N.j7 ( )[l+K(4)]cos(x4)d4 = -ao(x) Ixi <c (19)
0

3B(t)cos(x )dt = 0 Ix) >c (20)
0

Here

-(,,,+ ] 1-V + (Ck2] + (FA) [_ 3 + V (4)2]
B 4g2+i [ +(-4) 2 + (e)[ A () (21)

K(u) = Kl(u)[l +K 2(u)] + K2(u) (22)
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K1 (u2) ,u2+1(v-u2) + u (3-v4 u2) - 2uK (u K2(u )= 7- (23)
VU = 2+ 1(U2+l_2u) 4U-2+1(-v+u) + u(-3+v-u2)

After the dual integral equation, given by (19) and (20), are solved, (i.e., B( ) is

described so that the equations (19) and (20) are satisfied) the stress and the displacement

fields are found from (12) taking into account the relations (17) and (18).
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4. SOLUTION OF THE PROBLEM

It is convenient to introduce non-dimensional quantities

z- x  n=c , 4 -L (24)
C C

The dual integral equation (19) and (20) may now be expressed as

f lB(1)1+K(ol)]cos zil)d-n =-S(z), IzI <1, (25)
0

fB ()cos(zl)d 7=1 IzI > 1, (26)
0

where

1

S (z) c 2(. )T Go(cz) (27)

The solution of this dual integral equation is not known. For an approximate solution, we

recall the expression [17, 6.693.21

iJ I-J2 &+(11)cos(zril)d7l = 0, (k = 0, 1,2, 1), IzI > 1 (28)
0

Accordingly, if B (11) is chosen as

N
BN(l) = bk IT J 2k + I (1) (29)

k=0



then the displacement boundary condition (26) will be satisfied. To determine the unk-

nown coefficients bk, we introduce (29) into (25)

N

SN(z) =Y, bk J + (T") [1 +K( n-)] -s(zi)dil (30)
k=O 0

and impose that

r(z) = [S(z)-S(z)] 2  (31)

be a mifimum. To provide economy in computer calculations, we take into account the

limit behavior of the kernel K (13r1) in (25)

V

lim K(1il) v -V (32)

Computer experiments indicate that for 13_! 10- 2 the kernel K(13l) behaves like (32)

except near the crack tips. With this value of K (131) a great deal of simplifications is

achieved, since

cos [(k+ 1 r i
S&) J.+I(Y) cor 'z1) dTi = 1)a sin , z < 1, k = 0, 1,2, .. (33)

0 (l 2)- T

see [17, 6.671.2]. For integer values of k these functions can be expressed in the form of

polynomials

k+l

S*(z) = Y Ajx 2(-l), (34)
j-1
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where

A I= 1, Aj+ 2 - (2i-1)2] Aj (35)' (2j - 1) (2j)

Since r (z) 0 for every z, r (z) is minimized in the following sense

i Ml
fr(z)dz Az , r(zi), zi =Az(i-1), Az = 1 (36)
0
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5. RESULTS AND DISCUSSION

By means of the minimization process described in Section 4, the unknown

coefficients B (11) is determined. Afterwards, the stress field along the crack line is calcu-

lated by use of Eq. (18) and (12). The crack is loaded by a constant tensile load to and

four dislocations symmetrically located along two straight slip lines emanating from each

crack tip. Each slip line makes an angle a with the crack line as shown in Fig. 1., and

one edge dislocation is located along each line at a distance a from the crack tip. The

crack length is 2c and the nonlocality parameter is e.

Calculations have been performed for aluminum with properties:

A = 2.51 x 1O11 cgs, v = 0.3

b = 4.05 x 10- 8 cm

In order to see the effect of the location of dislocation in one set of calculations

(depicted by Figures 2-5) the distance a is varied while a is fixed, and in the other set

(Figures 6 and 7) a is fixed and a is varied; i.e.

(i) a = 670; a = 10- 4 , 10- 5 , 5 x 10- 5 , 5 x 10- 4 cm

(ii) a =600, 750; a = 10- 4cm.

In calculating BN(7i), given by Eq. (29), twelve terms (N = 12) gave satisfactory

results. In fact, the maximum error was less than 0.1% between the applied surface load

and the calculated ones, in all cases computed. The maximum error occurred very near

the crack tips (x = 0.99c). Elsewhere, along the crack surface, boundary conditions were

satisfied with much greater accuracy. Table 1 display the degree of accuracy by compar-

ing the calculated surface load with the applied one in several points along the crack sur-

face.
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The error in boundary tractions near the crack tips is the result of the approximation

(32) made in solving the dual integral equations (25) and (26). In previous work, Eringen

and his co-workers have shown that such an approximation does not cause appreciable

errors in the stress field. The stress field calculation uses the full value of the function

K (PT1) in Eq. (25).

In all Figures we give contributions of dislocations and dislocation-crack interaction

to the stress field, separately from the total stress field. The total stress fields acquire

maxima near crack tips; just outside the crack tips. Contrary to the classical elasticity

solution there is no singularity either at crack tips or at the points of application of dislo-

cations. Consequently, a yield criterion may be set up by equating the maximum stress

to the cohesive stress that hold bonds together. Such a yield criterion would be more

meaningful for a distribution of dislocations along the slip lines. Such an investigation

requires extensive analytical and computational efforts, extending our previous study

[13] on Mode II crack problems.
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Table 1.

Comparison of Applied and Calculated Surface Tractions.

e = 10-5cm., c = 10- 3cm. E = 10-5 CM., c = 10-3 cm.

a = 5x10 - 5cm., a = 670 a = 10- 4 cm., a = 750

(Fig. 3) (Fig. 6)

x/c Applied Calculated Applied Calculated

0.010 -1.35830 -1.35717 -1.35238 -1.35244

0.248 -1.36520 -1.36486 -1.35895 -1.35896

0.500 -1.39340 -1.39502 -1.38573 -1.38594

0.752 -1.49593 -1.49412 -1.47954 -1.47953

0.990 -3.75938 -3.76026 -1.80860 -1.80861

' , . .. . I



-16-

REFERENCES

[1] N. P. Louat, Proceedings of the International Conference on Fracture, Sendal,
Japan, 117, 1965

[2] A. C. Eringen, "Interaction of a dislocation with a crack", J. app. Phys. 54, 6811-
6817, 1983

[3] A. C. Eringen, C. G. Speziale and B. S. Kini, "Crack Tip Problem in Nonlocal
Elasticity", J. Mech. Phys. Solids, 25, 339-355, 1977

[4] A. C. Eringen, "Line Crack Subject to Shear", Int. J. of Fracture, 14, 367-379,
1978

[5] A. C. Eringen, "Screw Dislocation in Nonlocal Elasticity", J. Phys D: Appl.
Phys., 10, 671-678, 1977

[6] A. C. Eringen, "Edge Dislocation in Nonlocal Elasticity', Int. J. Engng. Science,
15, 177-183, 1977

[71 A. C. Eringen, "On Continuous Distribution of Dislocations in Nonlocal Elasti-
city", J. App. Phys. 55, 2675-2680, 1984

[8] A. C. Eringen, "State of Stress in the Neighborhood of a Sharp Crack Tip", Proc.
22nd Conference of Army Mathematicians, 1-19, 1976

[9] A. C. Eringen, "Theory of Nonlocal Elasticity and Some Applications", Res.
Mechanica, 21, 313-342, 1987

[10] L. Ilcewicz and M. Narasmihan and J. Wilson, "An Experimental Verification of
Nonlocal Fracture Criterion", Engng. Fracture Mech. 14, 801-808, 1981

[11] B. A. Bilby, A. H. Cottrell and K. H. Swinden, "The Spread of Plastic Yield from a
Notch", Proc. Roy. Soc., London A 272, 304-314, 1963

[12] V. Vitek, "Yielding on inclined planes at the tip of a crack loaded in uniform ten-
sion", J. Mech. Phys. Solids, 24, 263-275, 1976

[13] S. B. Altan and A. C. Eringen, "Plastic Yielding at Crack Tips", U. S. Army
Research Office Tech. Report, March 1988

[14] A. C. Eringen, "On differential equations of nonlocal elasticity and solutions of
screw dislocation and surface waves", J. Appl. Phys. 54, 4703-4710, 1983

[15] A. C. Eringen, "Nonlocal Continuum Theory for Dislocations and Fracture", Proc.
Int. Symp. on the Mechanics of Dislocations, edit. by E. C. Aifantis and J. P. Hirth;
American Society for Metals, 101-110, 1985.



- 17-

[16] A. C. Eringen, "Nonlocal Continuum Description of Lattice Dynamics and Appli-
cations", Cons.tutive Models of Deformation; edited by J. Chandra and R. Srivas-
tav, SIAM publications, 1987

[17] I. S. Gradshteyn and I. W. Rhyshik, "Tables of Integral, Series and Product",
Academic Press, New York, 1965



.000



to
-a

CJ,

0 x

0,

00

.0$

00

0V en C

ol~x 000salsIuosau(-O



0 0

0 0

aQ

1l

do r- 4 4 t Q " *

Nx4 *0 slsmotutl-o



so

---------- ------------- -

x

41

009+

00

o 4

c.2
00

92cvC

Oy( 1 \ 1 j salxls liauolsuatutc-uox



so

0

0 

0-

V) 0 1

0 eC)

ci* 0

00

Co .Q

al 
Co

C.) uaui- 
bi



so so s

tio

5.4 a

02

0

.0

Cf -* 0 C

o!x 04)ca1Sju~~au~-~



V4

It I-

lC,

00 0

00

00
0W

00

0 b

0c
4,l

s gSt.t.c-U 1


